Quantitative Analysis of Fe Oxidation State by XANES for Spinel Ferrite Nanoparticles

Y. Gao and P. Bonitatebus Jr. (GE Global Research Center)

Beamline(s): X18B

Spinel ferrites are well-established materials for application due to their useful magnetic properties. Their composition, both elemental and *stoichiometric*, may be altered without major structural changes, which permits tuning their ferrimagnetic properties in a wide range. In this work, specimens containing a *non-stoichiometric* ratio of maghemite (γ -Fe₂O₃) and magnetite (Fe₃O₄) nanoparticles were studied. Fe₃O₄ is an inverse spinel with Fe²⁺:Fe³⁺ = 1:2, and γ -Fe₂O₃ has Fe³⁺ statistically distributed in the tetrahedral and octahedral sites of a spinel lattice. It is important to correlate the relative amount of Fe₃O₄ (or γ -Fe₂O₃) in a nanoparticle specimen to the synthesis conditions used to engender the nanoparticles. It is also of interest to understand and establish a correlation between magnetization and the ratio of these ferrites through ongoing magnetic characterization experiments using a SQUID magnetometer.

These two materials have similar crystal structure and spectroscopic signature, and they cannot be differentiated with diffraction techniques due to peak broadening from nanoparticles. As there is a linear relationship between absorption edge position and oxidation state, XANES at K edge was used to determine the overall oxidation state and estimate the relative ratio of Fe₃O₄ to γ -Fe₂O₃ (Fe³⁺) in a specimen. The edge shift as defined at half height between Fe₃O₄ and Fe₂O₃ is 1.6 eV . An example of its application to a commercial sample is shown in figure 1.

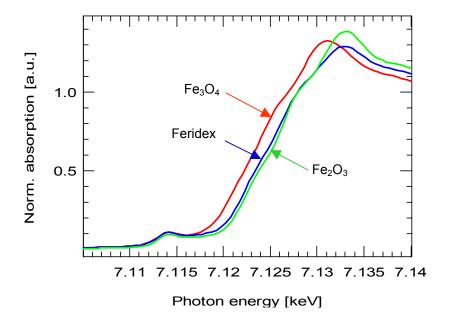


Figure 1. XANES at Fe K-edge. Feridex is a commercial ferrite nanoparticle sample containing 64% Fe₂O₃ and 36% Fe₃O₄ by weight. Its edge position clearly falls between Fe₃O₄ and Fe₂O₃ but more toward the latter, in a reasonable good agreement with nominal composition claimed by the manufacturer.